Tuesday, December 25, 2018

Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric interface control and very thin single crystal


A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm2 V−1 s−1—more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Wednesday, December 12, 2018

Preparation and characterization of high-quality perovskite CH3NH3PbX3 (I, Br) single crystal


In this paper, inverse temperature crystallization and top-seed solution growth method are used to grow high-quality perovskite CH3NH3PbX3 (I, Br) single crystal. The maximum crystal diameter is 6 mm for CH3NH3PbI3, and 3 mm for CH3NH3PbBr3. The results of XRD show that the crystals are tetragonal structure for CH3NH3PbI3, cubic crystal orientation for CH3NH3PbBr3. What is more, crystals exhibit excellent stability in air and can be maintained for eight months. Furthermore, the crystal growth processes are described in detail. The results demonstrate that CH3NH3PbBr3 single crystal growth is more sensitive to the environment.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Monday, November 26, 2018

Defect Distribution in N-Doped and Semi-Insulating 6H-SiC Bulk Single Crystal Wafers Observed by Two- and Three-Dimensional Light Scattering Tomography


We applied light scattering tomography (LST), which is powerful for rapid and nondestructive observation of structural defects in semiconductor single crystals, to investigate the defect distribution of 6H-SiC single crystal wafers for the first time. In conventional LST observation, a difference in tomograms between N-doped and semi-insulating 6H-SiC wafers was found. It is caused by the difference in optical absorption and scattered light in wafers. We successfully constructed three-dimensional (3D) LST images of the defects by rendering layer-by-layer two-dimensional (2D) LST images on different planes perpendicular to the direction of crystal growth. The 3D-LST images showed clearly the various defect distributions in depth direction.

Source:Ieee

For more information, please visit our website: http://www.powerwaywafer.com,

Monday, November 12, 2018

Silicon Carbide: Smaller, Faster, Tougher


For all its fine qualities, silicon carbide has been a difficult material to master. One of the biggest hurdles to its widespread use in power electronics has been in wafer manufacturing. When engineers first started working with the material in the 1970s, they struggled to grow large single crystals of the stuff—the silicon and carbon atoms had a habit of combining with one another to form a hodgepodge of different crystalline structures.
Over the years, researchers succeeded in creating larger and larger single-crystal wafers. And in 1991, a few years after the company was founded, Cree released the first commercially available SiC wafers. They were just an inch across and used mostly for research, but it was a start. Since then Cree and other manufacturers, including Dow CorningSiCrystalTankeBlue, and II-VI, have made steady progress in boosting the size of the wafers; these days 4-inch SiC wafers are common, and 6-inch wafers are on the horizon. A larger wafer size means that more devices can be built on each wafer, which drives down device costs.




Source:Ieee

For more information, please visit our website: http://www.powerwaywafer.com,

Monday, August 20, 2018

Growth and characterization of Bi2Sr2Ca2Cu3O10 and (Bi,Pb)2Sr2Ca2Cu3O10−δ single crystals

Large and high-quality single crystals of both Pb-free and Pb-doped high-temperature superconducting compounds (Bi1−xPbx)2Sr2Ca2Cu3O10−y (x = 0 and 0.3) were grown by means of a newly developed 'vapour-assisted travelling solvent floating zone' technique (VA-TSFZ). This modified zone-melting technique was performed in an image furnace and allowed for the first time the growth of large Pb-doped crystals, by compensating for the Pb losses that occur at high temperature. Crystals up to 3 × 2 × 0.1 mm3 were successfully grown. Post-annealing under high pressure of O2 (up to 10 MPa at T = 500 °C) was applied to enhance Tc and improve the homogeneity of the crystals. Structural characterization was performed by single-crystal x-ray diffraction (XRD). Structure refinement confirmed a commensurate modulated superlattice in the Pb-free crystals. The space group is orthorhombic, A2aa, with cell parameters a = 21.829(4) Å, b = 5.4222(9) Å and c = 37.19(1) Å. Superconducting studies were carried out by ac and dc magnetic measurements. Very sharp superconducting transitions were obtained in both kinds of crystals (ΔTc ≤ 1 K). In optimally doped Pb-free crystals, critical temperatures up to 111 K were measured. Magnetic critical current densities of 2 × 105 A cm−2 were measured at T = 30 K and μ0H = 0 T. A weak second peak in the magnetization loops was observed in the temperature range 40–50 K, above which the critical current density was found to rapidly decrease as a function of T and H. A comparison between the pinning properties in Pb-free and Pb-doped crystals is reported and discussed.


Source:IOPscience

For more information, please visit our website: http://www.powerwaywafer.com,

Sunday, August 5, 2018

Single crystalline growth of a soluble organic semiconductor in a parallel aligned liquid crystal solvent using rubbing-treated polyimide films

For directional control of organic single crystals, we propose a crystal growth method using liquid crystal as the solvent. In this study, we examined the formation of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single crystals using a parallel aligned liquid crystal (LC) cell and rubbing-treated polyimide films in order to clarify the effects of LC alignment on anisotropic C8-BTBT crystal growth. Based on the results, we found that the crystal growth direction of C8-BTBT single crystals was related to the direction of the aligned LC molecules because of rubbing treatment. Moreover, by optical evaluation, we found that the C8-BTBT single crystals have a aligned molecular structure.

Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Monday, July 23, 2018

Investigation of the structure and thermal behaviour of polymer liquid crystal / single wall carbon nanotubes nanocomposite

In the present work, nanocomposite of thermotropic polymer liquid crystal poly(heptane-1,7-dyil biphenyl-4,4'-dicarboxilate) and single wall carbon nanotubes was investigated. Nanocomposite films were casted from solution blended polymer liquid crystal and nanotubes. The structure and thermal behaviour of the nanocomposite were investigated by means of X-ray scattering and differential scanning calorimetry. The results show that there are two phase transitions on cooling and a single one on subsequent heating for both the neat polymer liquid crystal and nanocomposite. Hence, the smectic order of the polymer liquid crystal as well as its monotropic behaviour are preserved in the nanocomposite. The isotropic melt - smectic transition temperature in the nanocomposite is several degrees higher and the enthalpy of this process is much lower, suggesting heterogeneous nucleation of this phase on the surface of the nanotubes. The temperature of crystal structure formation during further cooling decreases in the nanocomposite showing a stabilization effect of the nanotubes on the smectic phase. Judging from the smaller enthalpy of the smectic-crystal phase transition and the new crystalline peak in the X-ray scattering patterns of the nanocomposite one could suggest a new crystalline form formation and this crystalline phase coexistence with smectic phases at lower temperatures.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Monday, July 2, 2018

A novel single-ended readout depth-of-interaction PET detector fabricated using sub-surface laser engraving

We propose a novel scintillation detector design for positron emission tomography (PET), which has depth of interaction (DOI) capability and uses a single-ended readout scheme. The DOI detector contains a pair of crystal bars segmented using sub-surface laser engraving (SSLE). The two crystal bars are optically coupled to each other at their top segments and are coupled to two photo-sensors at their bottom segments. Initially, we evaluated the performance of different designs of single crystal bars coupled to photomultiplier tubes at both ends. We found that segmentation by SSLE results in superior performance compared to the conventional method. As the next step, we constructed a crystal unit composed of a 3  ×  3  ×  20 mm3 crystal bar pair, with each bar containing four layers segmented using the SSLE. We measured the DOI performance by changing the optical conditions for the crystal unit. Based on the experimental results, we then assessed the detector performance in terms of the DOI capability by evaluating the position error, energy resolution, and light collection efficiency for various crystal unit designs with different bar sizes and a different number of layers (four to seven layers). DOI encoding with small position error was achieved for crystal units composed of a 3  ×  3  ×  20 mm3 LYSO bar pair having up to seven layers, and with those composed of a 2  ×  2  ×  20 mm3 LYSO bar pair having up to six layers. The energy resolution of the segment in the seven-layer 3  ×  3  ×  20 mm3 crystal bar pair was 9.3%–15.5% for 662 keV gamma-rays, where the segments closer to the photo-sensors provided better energy resolution. SSLE provides high geometrical accuracy at low production cost due to the simplicity of the crystal assembly. Therefore, the proposed DOI detector is expected to be an attractive choice for practical small-bore PET systems dedicated to imaging of the brain, breast, and small animals.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Monday, June 25, 2018

The density and compositional analysis of titanium doped sapphire single crystal grown by the Czocharlski method

Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.

Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Tuesday, June 5, 2018

Strain Avalanches in Microsized Single Crystals: Avalanche Size Predicted by a Continuum Crystal Plasticity Model*

Plastic deformation of small crystals occurs by power-law distributed strain avalanches whose universality is still debated. In this work we introduce a continuum crystal plasticity model for the deformation of microsized single crystals, which is able to reproduce the main experimental observations such as flow intermittency and statistics of strain avalanches. We report exact predictions for scaling exponents and scaling functions associated with random distribution of avalanche sizes. In this way, the developed model provides a routine for a quantitative characterization of the statistical aspects of strain avalanches in microsized single crystals.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Tuesday, May 15, 2018

Synthesis and optical characterization of Nickel doped Thiourea Barium Chloride (TBC) single crystals

Organometallic Thiourea barium chloride (TBC) single crystals were synthesized using solution evaporation process at room temperature. Synthesized thiourea barium chloride crystals were recrystallized and during the recrystallization process 1M%, 2M% and 5M% of nickel (Ni) was added to the solution and kept for crystallization. The variation of intensity peaks and the shift in the XRD peaks were observed due to the incorporation of nickel in the host matrix. Variations in the absorbance and transmittance spectra of the pure and Ni doped crystals further confirms the presence of nickel in TBC single crystal. The optical bandgap of the pure and nickel doped single crystals were calculated using Touc's relation. The results show that bandgap decreased with the dopant concentration in the thiourea barium chloride crystal. The optical constants such as extinction coefficient and reflectance were also studied using the absorption spectrum. The FTIR absorption also shows minute shift in the absorption peaks due to the presence of nickel in the host matrix. Photoluminescence spectra of pure and doped crystals were studied.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Tuesday, May 8, 2018

Optical, mechanical and thermal characterization of l-threonine single crystals grown in dimethyl urea solution

An organic material of a noncentrosymmetric l-threonine single crystal was grown in a dimethyl urea solution using the slow evaporation method. The grown crystal was transparent and colorless, with a size of about 20 × 7 × 4 mm3, obtained within a period of 10 days. The grown crystal was subjected to various studies, such as x-ray diffraction (XRD), Fourier transform infrared (FTIR), microhardness, ultraviolet–visible (UV–Vis) transmittance, thermogravimetric analysis and differential thermal analysis (TGA/DTA) and second harmonic generation (SHG). l-threonine crystals grown in a dimethyl urea solution show relative SHG efficiency of 0.92 times that of potassium dihydrogen phosphate. The functional groups of the crystals have been confirmed by FTIR analysis. The mechanical strength of the crystal was estimated by the Vickers hardness test. The lattice parameters of the grown crystal were determined by single crystal XRD and powder XRD studies, and the diffraction peaks were indexed. A UV–Vis spectrum was recorded in the wavelength range of 200–1100 nm to find the suitability of the crystal for nonlinear optical applications. The thermal stability of l-threonine crystal grown in dimethyl urea was checked using the TGA/DTA analysis.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Tuesday, April 24, 2018

Structural, optical, thermal, mechanical and dielectrical characterizations of γ-glycine crystals grown in strontium chloride solution

γ-glycine (GG) was synthesized from α-glycine in an aqueous solution of strontium chloride. A solubility study of the synthesized GG sample was conducted at various temperatures ranging from 30 to 55 °C. The saturated solution of GG was prepared using solubility data, and single crystals of GG were grown over a period of three weeks by the slow evaporation method at room temperature. The grown GG crystals were characterized by single-crystal x-ray diffraction analysis, UV–visible transmittance studies, thermogravimetric/differential thermal analysis studies, dielectric studies and Fourier transform infrared studies. The mechanical behavior of the crystals was assessed by Vickers microhardness measurements. The second-harmonic generation efficiency of the sample was measured using a Nd:YAG laser and the value was observed to be larger than that of potassium dihydrogen orthophosphate (KDP).

Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Wednesday, April 4, 2018

200-mm GaN-on-Si Based Blue Light-Emitting Diode Wafer with High Emission Uniformity

We investigated the emission wavelength uniformity of 200-mm GaN-on-Si based blue light-emitting diode (LED) wafer grown by metalorganic vapor phase epitaxy (MOVPE). The larger the Si substrate diameter becomes, the more difficult to obtain uniform distribution of the emission wavelength because of the larger bow during growth, resulting in larger on-wafer inhomogeneity in growth temperature. Owing to the GaN-on-Si buffer strain management, optimized gas flow condition, and precise control of temperature balance in a reactor, we have achieved high thickness and crystal quality uniformity over the 200-mm GaN-on-Si based blue LED wafer. As a result, excellent blue photoluminescence emission wavelength uniformity from the InGaN-multi-quantum wells can be demonstrated on a 200-mm wafer with a standard deviation of 2.53 nm (0.57%). Less wavelengths binning with these highly uniform emission over the 200-mm wafer show the capability of sustainable cost reduction in LED fabrication based on GaN-on-Si technology.

Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,
send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

Wednesday, March 14, 2018

Defect-driven synthesis of self-assembled single crystal titanium nanowires via electrochemistry

One-dimensional single crystal nanostructures have garnered much attention, from their low-dimensional physics to their technological uses, due to their unique properties and potential applications, from sensors to interconnects. There is an increasing interest in metallic titanium nanowires, yet their single crystal form has not been actualized. Vapor–liquid–solid (VLS) and template-assisted top-down methods are common means for nanowire synthesis; however, each has limitations with respect to nanowire composition and crystallinity. Here we show a simple electrochemical method to generate single crystal titanium nanowires on monocrystalline NiTi substrates. This work is a significant advance in addressing the challenge of growing single crystal titanium nanowires, which had been precluded by titanium's reactivity. Nanowires grew non-parallel to the surface and in a periodic arrangement along specific substrate directions; this behavior is attributed to a defect-driven mechanism. This synthesis technique ushers in new and rapid routes for single crystal metallic nanostructures, which have considerable implications for nanoscale electronics.

Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,



Tuesday, March 6, 2018

Growth of square Si single bulk crystals with large side-face widths using noncontact crucible method

The noncontact crucible method was used to prepare square Si single bulk crystals. The size of the square part of the ingots was determined by the side-face width of the four-cornered pattern that appeared on the top surface. We obtained square Si single crystals with sizes of 9.4 × 9.7 and 10.9 ×11.0 cm2 that had no fan-shaped {110} faces and had diagonal lengths of up to 91% of the crucible diameter. To obtain large square Si single bulk crystals with a large side-face width using the present method, the importance of establishing a larger low-temperature region in the Si melt while maintaining a smaller initial temperature reduction was considered.

Source:IOPscience

For more information, please visit our website: http://www.semiconductorwafers.net,
send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

Thursday, February 8, 2018

Solid state single crystal growth of three-dimensional faceted LaFeAsO crystals

Highlights

Crystal growth of well-faceted three dimensional LaFeAsO single crystals.
Solid state single crystal growth is used instead of flux growth.
Crystal size of up to 2 × 3 × 0.4 mm3.
Characterization of structure, composition, magnetic, thermodynamic properties.

Abstract

Solid state single crystal growth (SSCG) is a crystal growth technique where crystals are grown from a polycrystalline matrix. Here, we present single crystals of the iron pnictide LaFeAsO grown via SSCG using NaAs as a liquid phase to aid crystallization. The size of the as-grown crystals are up to 2 × 3 × 0.4 mm3. Typical for this method, but very uncommon for crystals of the pnictide superconductors and especially for the oxypnictides, the crystals show pronounced facets caused by considerable growth in c direction. The crystals were characterized regarding their composition, structure, magnetic, and thermodynamic properties. This sets the stage for further measurements for which single crystals are crucial such as any c axis and reciprocal space dependent measurements.
Source:ScienceDirect
If you need more information ,please visit our website:www.qualitymaterial.net,send us email at angle.ye@powerwaywafer.com or powerwaymaterial@gmail.com.

Wednesday, January 31, 2018

Physicists develop a device that could provide conclusive evidence for the existence (or not) of non-Abelian anyons

A quasiparticle quest

Capacitance measurement of bilayer graphene at a high magnetic field. The vertical dark blue to orange lines are signatures of fractional quantum Hall states that are shared between the two layers of the bilayer graphene sheet. The vertical line going through the center is believed to host an intriguing type of particles: non-Abelian anyons. Credit: University of California - Santa Barbara



What kinds of 'particles' are allowed by nature? The answer lies in the theory of quantum mechanics, which describes the microscopic world.

In a bid to stretch the boundaries of our understanding of the quantum world, UC Santa Barbara researchers have developed a device that could prove the existence of non-Abelian anyons, a quantum particle that has been mathematically predicted to exist in two-dimensional space, but so far not conclusively shown. The existence of these particles would pave the way toward major advances in topological quantum computing.

In a study that appears in the journal Nature, physicist Andrea Young, his graduate student Sasha Zibrov and their colleagues have taken a leap toward finding conclusive evidence for non-Abelian anyons. Using graphene, an atomically thin material derived from graphite (a form of carbon), they developed an extremely low-defect, highly tunable device in which non-Abelian anyons should be much more accessible. First, a little background: In our three-dimensional universe, elementary particles can be either fermions or bosons: think electrons (fermions) or the Higgs (a boson).
"The difference between these two types of 'quantum statistics' is fundamental to how matter behaves," Young said. For example, fermions cannot occupy the same quantum state, allowing us to push electrons around in semiconductors and preventing neutron stars from collapsing. Bosons can occupy the same state, leading to spectacular phenomena such as Bose-Einstein condensation and superconductivity, he explained. Combine a few fermions, such as the protons, neutrons, and electrons that make up atoms and you can get either type, but never evade the dichotomy.
In a two-dimensional universe, however, the laws of physics allow for a third possibility. Known as "anyons," this type of quantum particle is neither a boson nor a fermion, but rather something completely different—and some kinds of anyons, known as non-Abelian anyons, retain a memory of their past states, encoding quantum information across long distances and forming the theoretical building blocks for topological quantum computers.
Although we don't live in a two dimensional universe, when confined to a very thin sheet or slab of material, electrons do. In this case, anyons can emerge as "quasiparticles" from correlated states of many electrons. Perturbing such a system, say with an electrical potential, leads to the entire system rearranging just as if an nayon had moved.
The hunt for non-Abelian anyons begins by identifying the collective states that host them. "In fractional quantum Hall states—a type of collective electron state observed only in two dimensional samples at very high magnetic fields—the quasiparticles are known to have precisely a rational fraction of the electron charge, implying that they are anyons," Young said.
"Mathematically, sure, non-Abelian statistics are allowed and even predicted for some fractional quantum Hall states." he continued. However, scientists in this field have been limited by the fragility of the host states in the semiconductor material where they are typically studied. In these structures, the collective states themselves appear only at exceptionally low temperatures, rendering it doubly difficult to explore the unique quantum properties of individual anyons.
Graphene proves to be an ideal material to build devices to search for the elusive anyons. But, while scientists had been building graphene-based devices, other materials surrounding the graphene sheet—such as glass substrates and metallic gates—introduced enough disorder to destroy any signatures of non-Abelian states, Zibrov explained. The graphene is fine, it's the environment that is the problem, he said.
The solution? More atomically thin material.
"We've finally reached a point where everything in the device is made out of two-dimensional single crystals," said Young. "So not only the graphene itself, but the dielectrics are single crystals of hexagonal boron nitride that are flat and perfect and the gates are single crystals of graphite which are flat and perfect." By aligning and stacking these flat and perfect crystals of material on top of each other, the team achieved not only a very low-disorder system, but one that is also extremely tunable.
"Besides realizing these states, we can tune microscopic parameters in a very well controlled way and understand what makes these states stable and what destabilizes them," Young said. The fine degree of experimental control—and elimination of many unknowns— allowed the team to theoretically model the system with high accuracy, building confidence in their conclusions.
The materials advance gives these fragile excitations a certain amount of robustness, with the required temperatures nearly ten times higher than needed in other material systems. Bringing non-Abelian statistics into a more convenient temperature range proves an opportunity for not only for investigations of fundamental physics, but reignites hope for developing a topological quantum bit, which could form the basis for a new kind of quantum computer. Non-Abelian anyons are special in that they are thought to be able to process and store quantum information independent of many environmental effects, a major challenge in realizing quantum computers with traditional means.
But, say the physicists, first things first. Directly measuring the quantum properties of the emergent quasiparticles is very challenging, Zibrov explained. While some properties—such as fractional charge—have been definitively demonstrated, definitive proof of non-Abelian statistics—much less harnessing nonabelian anyons for quantum computation—has remained far out of the reach of experiments. "We don't really know yet experimentally if non-Abelian anyons exist," Zibrov said.
"Our experiments so far are consistent with theory, which tells us that some of the states we observed should be non-Abelian, but we still don't have an experimental smoking gun."
"We'd like an experiment that actually demonstrates a phenomenon unique to non-Abelian statistics," said Young, who has won numerous awards for his work, including the National Science Foundation's CAREER Award. "Now that we have a material that we understand really well, there are many ways to do this—we'll see if nature cooperates!"
Source:PHYS

If you need more information ,please visit our website:www.qualitymaterial.net,send us email at angle.ye@powerwaywafer.com or powerwaymaterial@gmail.com.

Thursday, January 25, 2018

A novel in situ method for simultaneous growth of smart material single crystals and thin films

Development of a novel in situ method for simultaneous growth of single crystals and thin films of a smart material spinel is achieved. Material to be grown as metal-incorporated single crystal and thin film was taken as a precursor and put into a bath containing acid as a reaction speed-up reagent (catalyst) as well as a solvent with a metal foil as cation scavenger. By this novel method, zinc aluminate crystals having hexagonal facets and thin films having single crystalline orientation were prepared from a single optimized bath. Properties of both crystals and thin films were studied using an x-ray diffractometer and EDAX. ZnAl2O4 is a well-known wide bandgap compound semiconductor (Eg = 3.8 eV), ceramic, opto-mechanical and anti-thermal coating in aerospace vehicles. Thus a space_ gmr technique was found to be a new low cost and advantageous method for in situ and simultaneous growth of single crystals and thin films of a smart material.

Source:IOPscience
If you need more information ,please visit our website:www.qualitymaterial.net,send us email at angle.ye@powerwaywafer.com or powerwaymaterial@gmail.com.

Wednesday, January 24, 2018

Scientists study the powers of tiny crystals

Scientists study the powers of tiny crystals

When it comes to the way scientists react to their discoveries, "That's interesting" falls somewhere between "Eureka!" and "Uh-oh."


"Interesting" is just what Dr. Jeremiah Gassensmith and his graduate student Madushani Dharmarwardana thought when they noticed unusual behavior in a sample of crystals they were working with in Gassensmith's chemistry lab at The University of Texas at Dallas.
As part of her doctoral research, Dharmarwardana was investigating how the material, from a family of organic semiconducting materials called naphthalene diimides, changes color from orange to yellow as it is heated.
"We were looking at this material as a thermochromic semiconductor," said Gassensmith, an assistant professor in the Department of Chemistry and Biochemistry in the School of Natural Sciences and Mathematics. "These types of semiconducting materials change color as temperature changes. Think of beer cans that change color when they're cold or color-changing thermometer strips you put on your forehead to check for fever."
As Dharmarwardana heated the tiny crystals—the samples were only about an eighth of an inch, or a couple of millimeters, in size—she noticed they would move, which was unexpected.
"The crystals would bend, coil, flex or jump, they would do all sorts of things," Gassensmith said. "That was … interesting."
Although such thermosalient behavior—also known as the jumping crystal effect—has been observed in other types of crystals, it had not been observed in this particular class of organic semiconducting crystals, Gassensmith said. Such behavior is of interest to researchers because it might be exploited for applications such as micromachines, sensors, or tiny actuators for medical devices and artificial muscles.
Dharmarwardana conducted a new set of experiments in which she glued down one end of the crystal to a glass cover slip and placed the slip on a hot plate.
"As the plate heated up, the crystal always tried to bend away from the heat," she said. "The explanation for this is that, once the crystal reaches a certain temperature, the arrangement of molecules within the crystal changes. Those changes move sequentially through the material, starting at the hot part that's stuck to the surface and propagating out. This causes the crystal to change shape."
"We see colossal expansion in these materials, almost 20 percent in size," Gassensmith said. "That's among the largest percentage change seen in an organic material."
In her next set of experiments, Dharmarwardana glued tiny stainless steel balls to the anchored crystals to see how much weight the crystal cantilevers could lift as they were heated. Because the crystals are brittle, she expected them to break under the load.
"It amazed me when I saw it was actually lifting the ball because the crystal is very small compared to the weight, which was almost 100 times heavier than the crystal," Dharmarwardana said. "When I designed the experiment, I never thought it would lift up. I thought it would break the crystal."
The maximum load lifted with a 3.5 millimeter-long crystal cantilever was about 4 milligrams, to a height of 0.24 millimeters.
As the crystal cooled, it lowered and became straight once more. While reheating the material did not result in another shape change, the material continued to change color with repeated temperature changes.
"This isn't a reversible transformation," Gassensmith said. "Basically, the crystal starts out loaded with the potential energy to change shape and carry out the motion, but it holds on to that energy until the material reaches a phase transition temperature. At that point, the crystal wants to release this energy. If it is not bound to anything, the crystal will just pop or curl, but by fixing it on one end, we can direct how that energy is released.
"It's still a single crystal, but its molecules are now in a different packing arrangement that has a lower energy."
Gassensmith said the next step is to further investigate different variations of the material, including whether the bending behavior of the materials can be incorporated into color-changing sensors or act as a mechanical breaker inside organic electronics.
"It will be interesting to see whether we can induce curling in these crystals electronically," he said. "In principle, we should be able to apply an electric current to lift things, instead of using a bunch of heaters."
Source:PHYS
If you need more information ,please visit our website:http://www.qualtiymaterial.net

Tuesday, January 16, 2018

Scientists manage to observe the inner structure of photonic crystals

NUST MISIS scientists manage to observe the inner structure of photonic crystals



The scheme of analysis of photonic crystals' inner structure with the help of ptychography. Credit: ©NUST MISIS

With the help of electronic microscopy, scientists have tracked defects in the surface of two-dimensional photonic crystals. But there are difficulties with bulk photonic crystals. There is no way for scientists to research the interiors of these unusual crystals. So scientists have been searching for a method to better measure these crystals for some time.
Ilya Besedin, an engineer from the NUST MISIS Laboratory of Superconducting Metamaterials, jointly with a group of scientists from Germany, the Netherlands, and Russia has demonstrated that there is a method of non-destructive analysis of the inner structure of the substance, which cannot be seen with the use of conventional X-rays. The new system will help to create microprocessors for optical computers. The work was published in Small.
The research group, led by Professor Ivan Vartanyants from MEPhI, has applied the recently developed method of ptychographic to photonic crystals. The method's essence is that the substance is illuminated by X-ray radiation of an exactly defined wave. Sources of such radiation are called synchrotrons, and the experiments were conducted at DESY in Germany.
"With conventional X-rays you can scan either macroscopic or very ordered structures. In our case, for structures of polystyrene spheres of nearly micron size, the accuracy of the image will be even worse than in fluoroscopy. At least, it won't be possible to discern a single object [smaller] than a micron," said Ilya Besedin.
Thanks to such a high quality X-ray, Ilya Besedin and his colleagues have managed to observe the structures of crystals ordered at a scale of tens and hundreds of nanometers. Most importantly, scientists have managed to identify internal defects of mesoscopic structures.
NUST MISIS scientists manage to observe the inner structure of photonic crystals

Photonic crystal received with the help of the method of ptychography. Credit: ©NUST MISIS
As Ilya Besedin explained, if the crystal is perfect, the beam can pass through or be reflected. However, because of defects, the beam might deviate from a straight line. "By knowing information about packaging defects, we can understand the logic through which the beam changes its direction. This means we can try to collect logical designs based on photonic crystals. Another thing is that we are not able to control the formation of these defects, we can only try to reduce [the defects] at the macro level," explained Besedin.
"A photonic crystal is like a waveguide for the light, only better. The waveguide is almost impossible to bend, and it's impossible to create photonic microchips on waveguides. A photonic crystal is most suitable for the creation of integral optical microchips where the light can spread where the developers need it to," noted Ilya Besedin. This is why the main value of this work is in the analysis of photonic crystals' inner structure with the help of ptychography.
As Ilya Besedin explained, if the crystal is perfect, the beam can pass through or be reflected. However, because of defects, the beam might deviate from a straight line. "By knowing information about packaging defects, we can understand the logic through which the beam changes its direction. This means we can try to collect logical designs based on photonic crystals. Another thing is that we are not able to control the formation of these defects, we can only try to reduce [the defects] at the macro level," explained Besedin.
"A photonic crystal is like a waveguide for the light, only better. The waveguide is almost impossible to bend, and it's impossible to create photonic microchips on waveguides. A photonic crystal is most suitable for the creation of integral optical microchips where the light can spread where the developers need it to," noted Ilya Besedin. This is why the main value of this work is in the analysis of photonic crystals' inner structure with the help of ptychography.
soource:HPY