Monday, July 23, 2018

Investigation of the structure and thermal behaviour of polymer liquid crystal / single wall carbon nanotubes nanocomposite

In the present work, nanocomposite of thermotropic polymer liquid crystal poly(heptane-1,7-dyil biphenyl-4,4'-dicarboxilate) and single wall carbon nanotubes was investigated. Nanocomposite films were casted from solution blended polymer liquid crystal and nanotubes. The structure and thermal behaviour of the nanocomposite were investigated by means of X-ray scattering and differential scanning calorimetry. The results show that there are two phase transitions on cooling and a single one on subsequent heating for both the neat polymer liquid crystal and nanocomposite. Hence, the smectic order of the polymer liquid crystal as well as its monotropic behaviour are preserved in the nanocomposite. The isotropic melt - smectic transition temperature in the nanocomposite is several degrees higher and the enthalpy of this process is much lower, suggesting heterogeneous nucleation of this phase on the surface of the nanotubes. The temperature of crystal structure formation during further cooling decreases in the nanocomposite showing a stabilization effect of the nanotubes on the smectic phase. Judging from the smaller enthalpy of the smectic-crystal phase transition and the new crystalline peak in the X-ray scattering patterns of the nanocomposite one could suggest a new crystalline form formation and this crystalline phase coexistence with smectic phases at lower temperatures.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Monday, July 2, 2018

A novel single-ended readout depth-of-interaction PET detector fabricated using sub-surface laser engraving

We propose a novel scintillation detector design for positron emission tomography (PET), which has depth of interaction (DOI) capability and uses a single-ended readout scheme. The DOI detector contains a pair of crystal bars segmented using sub-surface laser engraving (SSLE). The two crystal bars are optically coupled to each other at their top segments and are coupled to two photo-sensors at their bottom segments. Initially, we evaluated the performance of different designs of single crystal bars coupled to photomultiplier tubes at both ends. We found that segmentation by SSLE results in superior performance compared to the conventional method. As the next step, we constructed a crystal unit composed of a 3  ×  3  ×  20 mm3 crystal bar pair, with each bar containing four layers segmented using the SSLE. We measured the DOI performance by changing the optical conditions for the crystal unit. Based on the experimental results, we then assessed the detector performance in terms of the DOI capability by evaluating the position error, energy resolution, and light collection efficiency for various crystal unit designs with different bar sizes and a different number of layers (four to seven layers). DOI encoding with small position error was achieved for crystal units composed of a 3  ×  3  ×  20 mm3 LYSO bar pair having up to seven layers, and with those composed of a 2  ×  2  ×  20 mm3 LYSO bar pair having up to six layers. The energy resolution of the segment in the seven-layer 3  ×  3  ×  20 mm3 crystal bar pair was 9.3%–15.5% for 662 keV gamma-rays, where the segments closer to the photo-sensors provided better energy resolution. SSLE provides high geometrical accuracy at low production cost due to the simplicity of the crystal assembly. Therefore, the proposed DOI detector is expected to be an attractive choice for practical small-bore PET systems dedicated to imaging of the brain, breast, and small animals.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,