Monday, February 18, 2019

The growth of 122 and 11 iron-based superconductor single crystals and the influence of doping

This review focuses on the various single crystal growth techniques applied to the new class of high temperature superconductors—iron-based layered pnictides, such as the parent compounds AFe2As2 (A = Ba, Sr, Ca) (122), hole-doped A1 − xK x Fe2As2, electron/hole-doped AFe2 − xM x As2 (M = Co, Ni, Mn, Cr), isovalently doped AFe2As2 − xP x , the chalcogenides A x Fe2 − ySe2(A = K, Rb, Cs) (122), and Fe1 − δTe1 − xSe x (11). Detailed single crystal growth methods (fluxes, Bridgman, floating zone(FZ)), the associated procedures, and their impact on crystal size and quality are presented. We also discuss the influence of doping on the structure, and the electric, magnetic, and superconducting properties of these compounds by a comparative study of different growth methods.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Monday, February 11, 2019

Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals

Cd0.96Zn0.04Te and  Cd0.9Zn0.1Te semiconductor wafers grown by the modified vertical Bridgman method with dimensions of 10 mm × 10 mm × 2.5 mm were lapped with a 2–5 µm polygonal Al2O3 powder solution, and then chemically mechanically polished by an acid solution having nanoparticles with a diameter of around 5 nm, corresponding to the surface roughnesses Ra of 2.135 nm, 1.968 nm and 1.856 nm. The hardness and elastic modulus of,Cd0.96Zn0.04Te and  Cd0.9Zn0.1Te single crystals are 1.21 GPa, 42.5 GPa; 1.02 GPa, 44.0 GPa; and 1.19 GPa, 43.4 GPa, respectively. After nanocutting is performed by the Berkovich nanoindenter, the surface roughness Ra of the Cd0.9Zn0.1Te single crystal attains a 0.215 nm ultra-smooth surface. The hardness and elastic modulus of three kinds of CdZnTe single crystals decrease with the increase of indentation load. When the nanoindenter departs the surface of the crystals, the adherence effects are obvious for the three kinds of single crystals. This is attributed to the plastic sticking behavior of CdZnTe material at a nanoscale level. When the indentation load of the three kinds of CdZnTe single crystals is in the range of 4000–12 000 µN, the adhered CdZnTe material on the nanoindenter falls onto the surface and accumulates around the nanoindentation.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Friday, February 1, 2019

Crystal growth and optical characterization of an organic single crystal for frequency conversion applications

Organic nonlinear optical 2-methylquinolinium L-malate single crystals have been grown by slow evaporation solution growth technique from a mixture of 2-methylqiunoline and L-malic acid in ethanol solution at ambient temperature. Single crystal X-ray diffraction analysis reveals that grown crystal in monoclinic system with non-centrosymmetric space group P21 and the lattice parameters are a = 7.35 Ǻ, b = 26.51 Ǻ, c = 10.83 Á, α = γ = 90° β = 102.95º and V = 2057.4 Ǻ3. UV-vis spectrum indicates that the crystal is transparent (75%) in the entire visible region with a cut-off wavelength of 437 nm and optical energy band gap Eg is found to be 2.71 eV. Microhardness measurement reveals the mechanical strength of the grown crystal. The photoluminescence spectrum shows the blue emission of the crystal. Laser damage threshold studies was carried out to ascertain the suitability of grown crystal for laser applications.The relative second harmonic generation efficiency of 2-methlquinolinium L-malate crystal was found to be two times greater than that of KDP.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,