Thursday, August 22, 2019

Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Friday, August 9, 2019

Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric interface control and very thin single crystal

A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm2 V−1 s−1—more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Thursday, August 1, 2019

Spectroscopic properties of Nd3+:Lu3ScAl4O12 single crystal

Nd:Lu3ScAl4O12 single crystal has been grown by the Czochralski method. The segregation coefficient of Nd3+ ions in LuSAG crystal is 0.22. X-ray powder diffraction (XRD) experiments show that the Nd:LuSAG crystal crystallizes in cubic structure with space group Ia3d and its cell parameters are a = 1.1953 nm. The absorption and fluorescence spectra of Nd:LuSAG crystal were investigated at room temperature. The spectral parameters were calculated based on Judd–Ofelt (J–O) theory, and the intensity parameters Ω2, Ω4 and Ω6 were obtained to be 0.14, 3.38, and 4.88 × 10−20 cm2, respectively. The calculated spontaneous radiative probabilities, branching ratios, radiative lifetime and quantum efficiency have been evaluated for the 4F3/2 excited state using the calculated intensity parameters. The results indicate that this crystal can be considered as a promising material for solid-state laser application.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Tuesday, July 23, 2019

Analytical development of single crystal Macro Fiber Composite actuators for active twist rotor blades

A Macro Fiber Composite (MFC) is a piezoelectric fiber composite which has an interdigitated electrode, rectangular cross-section and unidirectional polycrystalline piezoceramic (PZT) fibers embedded in the polymer matrix. A MFC actuator has much higher actuation performance and flexibility than a monolithic piezoceramic actuator. Moreover, the single crystal piezoelectric material exhibits much higher induced strain levels, energy density and coupling than those of polycrystalline piezoceramic materials. Thus, the performance of an MFC can be improved by using single crystal piezoelectric fiber instead of polycrystalline piezoceramic fiber. This study investigates the analytical modeling, material properties and actuation performance of an MFC using single crystal piezoelectric material (single crystal MFC). For single crystal MFC, the mechanical properties are calculated by the classical lamination theory, and the uniform fields model (UFM) is adopted to predict piezoelectric strain constants. In addition, the actuation performance of the single crystal MFC with the active twist rotor blade is studied. The material properties and actuation performance of single crystal MFC are compared with those of standard MFC.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Wednesday, July 17, 2019

The density and compositional analysis of titanium doped sapphire single crystal grown by the Czocharlski method

Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Tuesday, July 9, 2019

Bi-2212 and Y123 highly curved single-crystal-like objects: whiskers, bows and ring-like structures

High-temperature superconducting objects of Bi2Sr2CaCu2O8 and Y Ba2Cu3O7 highly curved in the ab-plane, such as curved/kinked whiskers, bows and ring-like structures, were obtained within a solid–liquid–solid (SLS) grass-like growth mechanism. As-grown objects are crystals with three-dimensional epitaxy similar to conventional single crystals: they can be viewed as crystal parts 'cut' from a conventional rectangular crystal. Between our curved objects and conventional crystals, whiskers or thin films there are some differences in the superconducting properties induced only by the shape factors and no new physics is observed. Some details of the growth mechanism are discussed, emphasizing curved-line formation.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

Thursday, June 20, 2019

A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMN–PZT single crystal

Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1  ×  1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.



Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,